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ABSTRACT 

Previously published methods of measuring and interpreting the Hall coefficient and 
resistivity of semiconductors are summarized. The conventional and van der Pauw 
methods of measurement are briefly discussed. Mobility is shown to be a function of 
carrier scattering in a specific semiconductor. The equations for charge carrier con- 
centration a re  developed for both extrinsic and intrinsic conduction. These equations 
are then used as the basis for interpreting the measured experimental data. The analy- 
sis of the data near the intrinsic range and the temperature range over which the experi- 
mental measurements must be made are specified. 
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A SUMMARY OF THE MEASUREMENT AND INTERPRETATION OF THE 

HALL COEFFICIENT AND RESISTIVITY OF SEMICONDUCTORS 

by D. Michae l  S t re tchber ry  

Lewis Research Center 

SUMMARY 

A knowledge of the parameters of semiconductor material is important both for basic 
materials research and for device development. An analysis of Hall coefficient and re- 
sistivity data measured over a temperature range will yield several of these parameters, 
such as the impurity doping concentrations, the impurity ionization energy, the band gap 
energy, and mobility. The measurement and interpretation of the Hall coefficient and re- 
sistivity are summarized from the available literature. 

The conventional and van der Pauw methods of measuring Hall coefficient and resis- 
tivity are  briefly discussed. The van der Pauw method was found to be advantageous for 
small samples. 

averaged relaxation time, which is a characteristic of a particular scattering process and 
a specific semiconductor material. The different kinds of scattering a re  qualitatively 
discussed. The factor a!, which relates the Hall coefficient to the carrier concentra- 
tion, is also a function of relaxation time. 

The equations for charge carrier concentr 
intrinsic conduction. They are  found to be fun 
conductor parameters. These equations are then used as the basis for interpreting the 
measured experimental data. The method of interpretation is to estimate the equation 
parameters and then to calculate the car 
est. The parameters a re  varied 

The shape of the Hall coeffici 
trinsic conduction is shown so that int 

The temperature range over 
discussed. There a re  certain ch 
rier concentration against reciprocal temperature from which data must be included for 
extrinsic or intrinsic interpretation. 

The mobility of semiconductors is also discussed. It is related to an energy- 

ped for both extrinsic and 
ature and the various semi- 

perature, of inter- 
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I NTRO DUCT ION 

The NASA-Lewis Research Center is currently engaged in a program which includes 
the determination of the basic properties of semiconductor materials, particularly for 
high-temperature applications. The ultimate objective is the development of devices that 
operate at temperatures greater than SOOo C (773 K). The nieasurement and aiialysis of 
the Hall coefficient and resistivity as a function of temperature was picked as the niethod 
for determining the desired properties. Although there are  other ways of obtaining these 
properties, this method is the most popular and has been used since the early days of 
semiconductor research. The derivations of the pertinent equations and the methods of 
analysis which result are  well known (refs. 1 and 2). But, i t  was realized that the liter- 
ature does not emphasize the use of the derived equations for the interpretation of exper- 
imental data and that no single source contains all of the required inforniation. There- 
fore, a literature search was started, and this sumiiiary report resulted. The purpose 
of this report is to make available the collected information to the researcher who wants 
to begin using the Hall coefficient and resistivity niethods. More details of the methods 
can be found in the references cited. This report has proved very useful to our program 
and should be equally useful to others. 

This report summarizes the use of the Hall coefficient and resistivity data as  a func- 
tion of temperature to obtain several of the electrical properties of semiconductors, such 
as mobility, doping concentrations, the ionization energy of the major dopant, and the band 
gap energy. The topics discussed are applicable to all seniiconductors and not limited to 

I those suitable for high-teiiiperature use. The introductory sections are  concerned with the 
applicability of Hall coefficient and resistivity data (ref. 3), the measurement of these quan- 
tities (refs. 1 and 4), and the charge carrier mobility in semiconductors (refs. 5 to 8). Thesl 
sections a re  included for a coiiiplete discussion of the problem of interpreting the data. 

The applicability of the Hall coefficient and resistivity to a basic materials research 
program and to a device development prograni is illustrated by specific examples. Sev- 
eral of the parameters upon which device design depends are directly obtained from Hall 
data. The conventional and the van der Pauw methods of nieasurement are briefly de- 
scribed (refs. l and 4). The latter method is valuable because it is independent of the 
shape of the sample and, therefore, is more easily applicable to small samples. The 
mobility of semiconductors is discussed both as it illustrates the scattering processes 
t'aking place in the semiconductor and in its role of influencing the relation between the 
Hall coefficient and the charge carrier concentration (refs. 5 to 8). The bulk of the dis- 
cussion is qualitative because of the complexity of mobility theory. 

and intrinsic conduction (ref. 2). For the extrinsic case they are a function of tempera- 
ture, impurity concentrations, and the impurity ionization energy. The oversimplified 

The equations for the charge carrier concentration were developed both for extrinsic 
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uncompensated case is considered first and then generalized to the more realistic com- 
pensated case. The charge carrier concentration equation for intrinsic conduction is 
shown to be a function of the temperature a band gap enerb7. 

The bases for interpreting the nieasur  riniental data are the 
carrier concentration is calculated at the required temperatures by us i  
estiniated values of the constants. By coniparin he calculated results with the experi- 
mental data, those vaIues of the constants that allow the best curve fit can be obtained. 
Initially, the constants of the equations a re  estiniated from the experimental data curves. 
The characteristic shapes of the Hall coefficient and resistivity against temperature 
curves in the temperature range near intrinsic conductivity is illustrated (ref. 9). Knowl- 
edge of these characteristic shapes prevent errors being nude in the interpretation of the 
data in  this region. 

temperature range over which the Hall coefficient and resistivity must be measured. 
Data must be obtained over a temperature range wide enough so that the methods of in- 
terpretation that are to be developed can be used. 

Concluding the report is a brief discussion of the relevant criteria for specifying the 

APPLICABILITY OF HALL COEFFICIENT AND RESISTIVITY 

A knowledge of the Hall coefficient and resistivity of a semiconductor is important 
both for basic materials research and device design. These naeasurenients have proved 
useful since the discovery of semiconductors, and their value is illustrated by specific 
examples. 

eters of the material and are  valuable in a semiconductor materials research. Also 
valuable is information about the transport properties of the charge carriers which an 
analysis of the mobility data against temperature gives. 

Seni iconductor device design depends on several parameters, such as  the impurity 
concentrations (doping levels) of each material, the physical dimensions of each part of 
the device, the basic constants particular to the device material, the diffusion constants 
(or mobilities) of the charge carriers, the lifetime of the carriers, and e proposed op- 
erating teni&xature of the device. A knowledge of the Hall coefficient and resistivi 
a function of temperature gives the designer the doping levels of the materials, the car- 
rier mobilities (and therefore the diffusion constants), and the band gap energy. The dif- 
fusion constants can be obtained directly from the mobilities by Einstein's relation. The 
band gap energy affects the operating temperature of the device. The basic constants of 
the material (such a s  the breakdown electric fie1 r the dielectric constant) can usually 
be measured. Normally, the physical dimensions are measured or calculated. The life- 

The band gap energy and energy levels of the impurities are basic electrical parani- 
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time of the charge carriers is measured by methods not related to  the Hall coefficient or 
rmation (but not all) refore, it is evident that a s 

by an analysis of 
nction (diode) 

tion is proportional to the square root of the dopant density of the more lightly doped re- 
gion. The breakdown voltage is inversely proportional to this dopant density. The as- 
sumption is made that the doping atoms are completely ionized. The diffusion constant 
appears in equations pertaining to current flow. Two examples are the characteristic 
voltage-current equation of the diode and the expression for the ac impedance. 

Other devices are made by combining junctions in certain configurations. There are 
specific considerations for each type of device, but a common requirement is good junc- 
tion design. For transistors, the current gain and the four pole parameters (which spe- 
cify the ac characteristics) are both functions of doping levels and diffusion constants. 

It is evident that both the basic materials researcher and the device developer are 
interested in measuring and interpreting Hall coefficient and resistivity data. The in- 
formation obtained from these relatively simple electrical measurements is of much 
value. 

MEASUREMENT OF HALL COEFFICIENT AND RESISTIVITY 

A brief description is given of both the conventional and van der Pauw methods of 
measuring the Hall coefficient and resistivity. References are cited to indicate where 
comprehensive information about both methods can be found. 

Convent iona l  M e t  hod 

The conventional Hall and resistivity measurements are made on constant-thickness, 
amples of semiconductor material, as shown in figure 1. The arms on 

each side are for ease in making contacts which will perturb the current flow through the 
length of the sample as little as possible. A current I (in amperes) is passed the length 

dimensions of the sample (in centimeters) are known, the resistivity can be cal- 
sample fPom A to  B. If the voltage drop (in volts) from C to E is measured 

culated as follows: 

ohm-cm VCEtW 
IL 

P =  

4 



E '  

I 

Sample thickness, t 

Figure 1. - Bridge-shaped s%mple for conventional hall and re- 
sistivity measurements. ( B  peraendicular to plane of crystal.) 

where t, W, and L are particular dimensions of the sample as shown in figure 1. The 
conductivity (which is the inverse of the resistivity) can usually be written as 

n-type (electrons majority carrier): 

p-type (holes majority carrier): 

where no and po are  the equilibrium concentrations, pn and p are  the conductivity 
mobilities of electrons and holes, respectively, and q is the electronic charge. If both 
electrons and holes are present in equal or nearly equal concentrations, the conductivity 
equation is the more general equation 

P 

Analogous equations can also be written for the Hall coefficient. If in addition to the 
current I a known magnetic field B (in tesla) is applied perpendicular to the plane of the 
crystal, a voltage VH will be observed across the width of the crystal from C to D. 
A measurement of VH will allow the calc ion of the Hall coefficient RH. It is ex- 
pressed in terms of measurable quantities as 

4 3 RH=-XlO cm / C  
BI 

(4) 
1 
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The sign of % indicates the material type (i. e. , for RH > 0, the semiconductor is - 
p-type; for % < 0, it is n-type). 

*The Hall coefficient is 

n-type: 

a! 
% = - -  

nOq 

p-type: 

where a! is a factor with a value usually between 1 and 2. The factor a! is discussed later 
(in the section MOBILITY AND ITS INFLUENCE). If both types of carriers a re  present in 
equal or nearly equal concentrations, the Hall coefficient is more generally expressed as 

Q Po.;- noPn 2 

<POPP -!- n0.J2 
% = -  

It can be seen from this equation that, if the Hall  coefficient can be measured, the 
carrier concentration can be easily calculated for the case where there is only one type 
of carrier. When there are two types of carriers, the concentrations are  not easily de- 
termined. This is discussed later in the section INTERPRETATION O F  DATA. The mo- 
bility can be calculated when the Hall coefficient and resistivity a re  known, as is discussed 
in the section MOBILITY AND ITS INFLUENCE. 

semiconductors such as Shockley's (ref. 27). 
The material presented in this section can be typically found in elementary books on 

van der Pauw Method 

A method of measuring the Hall coefficient and resistivity of arbitrarily shaped Sam- 
ples has been derived by van der Pauw (ref. 4). Only four contacts instead of the five or 
more normally required are necessary for both measurements. The most important ad- 
vantage of this method is obvious: the sample no longer has to be machined to a particu- 
lar shape. This is advantageous when only small crystals are available and machining 
would waste a large proportion of the sample. The only restrictions of van der Pauw's 
derivation are (1) the sample must be of constant thickness, (2) there must not be cavities 

0 
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Sample thickness,' t 

Figure 2 - Arbitrarily shaped van der Pauw 
sample withfour electrical contacts (a, b, 
c, and d). 1B perpendicular to plane of 
crystal. 

in the crystal, and (3) small contacts must be made as close to the perimeter as possible. 
A van der Pauw sample is shown in figure 2. 

The resistivity equation derived by van der Pauw is 
- 

p=-  at (Rab, cd + Rbc, dalf( Rab ' cd ) ohm-cm 
Rbc, da 2 In 2 

The function f is given by van der Pauw in graphical form (see fig. 3). The quantity 
is defined, for example, to be the ratio of the voltage measured from d to c to Rab, cd 

the current flowing in a and out b. Other such ratios a re  defined similarly and are  also 
expressed in ohms. 

The Hall coefficient expression defined by van der Pauw is 

%-I t ARac, bd x104 c m 3 / ~  

Rab, cdlRbc, da 
Figure 3. - Function used for determining resistivity of sample, plotted as function of 

Rab, cdlRbc, da. 
1 . I  
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where ARac, bd is the difference between Rac, bd without the applied magnetic field and 
with the field. The sign of RH indicates the type of the semiconductor. 

Inf luence of Thermomagnetic and Thermoelectric Effects 

Thermomagnetic and thermoelectric effects can influence the Hall voltage. Some, 
such as the Seebeck, Nernst, and Righi-Leduc effects, can be eliminated through averag- 
ing the data obtained by reversing the current direction. Another, the magnetoresistance 
effect, is eliminated through averaging the data obtained by reversing the magnetic field 
(refs. 1 and 7). Finally, the Peltier-Nernst and Ettinghausen effects cannot be removed 
by data averaging but usually are small enough to neglect (ref. 7). However, their in- 
fluence should be estimated to verify this assumption. 

Suggested References 

A popular book which describes nearly all aspects of the Hall effect is that by Putley 
(ref. 1). The conventional measurement of Hall coefficient and resistivity, as well as the 
general equipment that is required, a re  discussed. The thermomagnetic and thermoelec- 
tric effects and their influence on the Hall coefficient are described in detail. 

The original paper by van der Pauw (ref. 4) gives the basic information on his 
method of measurement. In reference 7 van Daal extends the discussion of the van der 
Pauw method and also describes the influence of the thermomagnetic and thermoelectric 
effects. 

MOBILITY AND ITS INFLUENCE 

Several kinds of mobility are used in the semiconductor literature. They are seldom 
differentiated well. Mobility is defined herein since it is used often in this report. When a 
semiconductor is subjected to an electric field, the charge carriers are given a drift ve- 
locity. The drift velocity is proportional to the electric field. The constant of propor- 
tionality is defined as the mobility p. The basic types of mobility depend on whether the 
carriers are excess minority carriers or majority carriers in equilibrium (ref. 10). 
The mobility for the former case is called drift mobility and for the latter case is called 
conductivity mobility. The distinction between the two is usually not significant. But, 
precisely speaking, the conductivity mobility is the appropriate mobility to use in all 
cases in this paper. The mobility of electrons is generally different than that of holes. 

8 



It is possible to have electron and hole conductivity mobilities, as well as electron and 
hole drift mobilities. 

ductivity mobility and is defined as 
There is in general use another quantity called the Hall mobility. It is a type of ‘con- 

RH 
P H = -  

P 
(9) 

If equations (2) and (5) a re  used, it can be shown that the Hall mobility is related to the 
conductivity mobility by 

Interest in mobility as it relates to this report is twofold. First, the analysis of 
mobility as a function of temperature yields information about the scattering processes 
which influence the movement of charge carriers in the semiconductor. Secondly, a! is 
obtained in the study of mobility as a function of the scattering processes and of the par- 
ticular semiconductor band structure. 

Relating Mobility to Scattering 

The relation between mobility and scattering shows that the mobility is directly de- 
pendent on the energy average of the relaxation time T. The energy average of T is de- 
noted as (7). The relaxation time is closely related to the average time between col- 
lisions of the charge carriers. They are equal only when T is not a function of energy. 
(See Smith (ref. 5) for more details.) The relaxation time is introduced as the charac- 
teristic time governing the establishment of equilibrium of the initially disturbed carrier 
concentration. The relaxation time as a function of energy (02, more generally, velocity) 
must be calculated for the specific scattering process and then energy-averaged to ob- 
tain the mobility. The factor a! also depends on (7). 

The derivation is based on the following assumptions: 
(1) Spherical constant-energy surfaces in If-space &-space is related to momentum 

(2) An n-type semiconductor with a parabolic conduction band 
(3) A nondegenerate semiconductor 
(4) Relaxation time 7 as a function of energy only (isotropic) 

space by a multiplicative constant) 

The first assumption presumes that the properties of the semiconductor (such as conduc- 
tivity and effective mass) are isotropic. The second assumption allows the usual density- 

9 



of-states expression to be used in the derivation (see the section DEVELOPMENT OF 
CHARGE CARRIER CONCENTRATION EQUATIONS) The third assumption allows the 
use"of Boltzmann statistics in place of Fermi-Dirac statistics. Also assumed is an elec- 
tric field in the x-direction Sx. This derivation appears in Smith (ref. 5), Putley 
(ref. l),  van Daal (ref. 7), and Blatt (ref. 6). 

of (7), which yields the results for mobility and the factor a. This current density 
equation is 

The result is an equation for J,, the current density in the x-direction, as a function 

where mg is the effective mass of electrons and (7) is defined to be 

where E is 

E - E, 
E =  

kT 

and k is the Boltzmann constant, T is temperature, E is energy, and E, is the energy 
of the bottom of the conduction band. The average drift velocity of the electrons is given 
bY 

JX (vx) = *- 
nos 

This relation plus the definition of mobility 

allows the mobility to be expressed in terms of the energy-averaged relaxation time 

10 



The definition of conductivity is 

Thus, it can be expressed as 

and equation (2) is verified. 

time. To calculate the dependence of mobility on any scattering process all that need be 
done is to determine the characteristic T for that type of scattering and calculate its 
average by use of equation (12). However, this is difficult to do. 

If the same type of calculation as shown in equations (11) to (18) is carried out, but 
including the effect of a magnetic field on the charge carriers, the result for the factor 
a! is 

The mobility has now been expressed as a function of the energy-averaged relaxation 

Genera I i z  ing Mobi I it y 

2 The equations for p and a! in terms of (7) and ( r  ) will be modified when the 
constant-energy surfaces are not spherical or when there are several equivalent energy 
minimums in the conduction band. Consider first the case of nonspherical constant- 
energy surfaces with a single energy minimum in the conduction band at k = 0. (The n 
subscript will be dropped from the mobility symbol.) 

The effective mass is a function of the shape of the energy bands and therefore, in 
general, is a tensor quantity. It is scalar only when the constant-energy surfaces a re  
spherical. However, when they are not spherical, a set of axes can be chosen to make 
the effective mass tensor diagonal. The applied electric field then can be broken up into 
its components along the chosen axes. 

I 
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By an extension of this derivation, a set of equations similar to equation (11) results: 

where mz, m* and m: a re  the diagonal elements of the effective mass tensor, and 
therefore 

27 

The conductivity is also a diagonal tensor in terms of these axes and its components a re  
written as 

*1 = n0w1 1 
Now consider the existence of several equivalent energy minimums in the conduction 

band. If there a re  M minimums, there are no/M electrons per unit volume in each. 
Assume M = 6, which is the case for silicon (see fig. 4). The sum over all the electrons 

12  



Figure 4. - Constant-energy surfaces in &pace for energy just above 
bottom of conduction band in silicon. Minimums are at centers of el- 
lipsoids. 

(which is the sum Over all six minimums) will allow the current density to be given by a 
symmetrical expression of the form 

Thus, all the diagonal terms of the conductivity tensor are equal, and it can be written as 

(24) 1 
3 

CT = - n0s(1-11 + 1-12 + 1-13) 

U the conductivity and conductivity mobility a re  written as 

13 



the conductivity effective mass and conductivity mobility are defined as 
- 

Note that the constant-energy surfaces for silicon a r e  ellipsoids. Therefore, two of 
the effective masses in equations (26) will be equal (mi = mg = m+) because of the sym- 
metry of the ellipsoids, and will be different from the third (mg = mz). Equations (26) 
then reduce to . 

I 

The conductivity effective mass and conductivity mobility are  defined because the 
equations in which mt,  mi,  m$, pl, p2, and p3 appear can be written more conven- 
iently with m: and p. It must be remembered, however, that m: and p depend on 
the band structure of the semiconductor. Thus, equations (26) and (27) a re  not general 
equations for all band structures. A Hall effective mass (which is analogous to the con- 
ductivity effective mass) can be defined for use with the Hall mobility. 

is also more complicated for the case when there a re  several equiv- 
alent energy minimums in the conduction band and nonspherical constant-energy surfaces. 
If the number of equivalent minimums is six, for example, a! is given by (ref. 5) 

The factor 
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If the constant-energy surfaces are ellipsoidal, m! = mz = m$ and m i  = mz, a! be- 
comes 

(T2> 3c(c + 2) 

( T ) 2  (2c + 1) * 
a!= 

2 

where C isdefinedas mT,/rn,f. 

Scattering Processes 

The derivation of a relaxation time for a particular type of scattering is not presented 
because of the complexity of the calculations. The different types of scattering processes 
are, however, qualitatively discussed. In general, the mobility will be determined at low 
temperatures by crystal structure defects and impurities, and at high temperatures by 
vibrations of the lattice. Table I lists the different possible types of scattering processes 
and the factor a! correspondin to them. The values for a are  from van Daal (ref. 7). 
They include only the (T') / ( T )  

equal to 1. References are also listed in table I. 

of a crystal and its nearby neighbors vibrate in the same direction (in phase). Optical 
vibrations are those in which two adjacent particles move in opposite directions (out of 
phase). Transverse and longitudinal vibrations can exist for both types of lattice vibra- 
tion. Figure 5 illustrates acoustic and optical vibration for both the transverse and lon- 
gitudinal cases. 

Acoustic and optical scattering differ for polar and nonpolar crystals (see table I). 
Acoustic scattering for nonpolar crystals is called acoustic-mode scattering and for polar 
crystals is called piezoelectric scattering. Optical scattering for nonpolar crystals is 
called optical-mode scattering, and for polar crystals it is called polar scattering. Sili- 
con and germanium are nonpolar crystals, and silicon carbide is polar. Whether a crys- 
tal is nonpolar or polar is determined by whether the crystal's bonds a re  polar or non- 
polar. A polar bond will have the center of negative charge offset from the center of pos- 
itive charge. Ionic bonding is polar, but covalent bonding can be either. 

Early calculations of mobility considered only acoustic-mode scattering. This lead 
to a mobility which varies as Tm3l2, The result was obtained by Bardeen and Shockley 
(kef. 11). Exceptions were immediately found to the predicted T -'I2 variation. It was 
determined that the band structure would have to be taken into account. Herring (ref. 12) 
developed the transport properties for the t7many-valleyfT model for which the band edge 
occurs at a number of equivalent points in ;-space and for which the surfaces of constant 

2g part of CY. The effective mass part is assumed to be 

Lattice vibrations are of two types. Acoustic vibrations a re  those in which an atom 
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TABLE I. - SCATTERING PROCESSES, VALUES OF CYa, AND REFERENCES 

I 
?onstant relating 
Hall coefficient 
tnd carrier con- 

Types of scattering Reference 

j, 

Acoustical mode (acoustical lattice vibrations of non- 
polar crystals) 

Piezoelectric (acoustical lattice vibrations of polar 
crystals) 

Optical mode (optical lattice vibrations of nonpolar 
crystals) 

Polar (optical lattice vibrations of polar crystals) 

I Intervalley 

Ionized impurity 

Neutral impurity t-- Combination of acoustic and ionized impurity scatteriq 

Structure defects 

Electron- hole 

Electron- electron 

centration, 
CY 

1.10 to 1.34 1 23, 7 I 
----------- 

1.0 1 13 I 

?t is assumed here that the effective mass part of 01 equals 1. 
bValues of a are  from van ~ a a l  (ref. 7). 

Direction of propagation - 
0 0 o-o- 
Acoustic-transverse Acoustic-longitudinal 

0 0 -00- 
I 

Optical-transverse Optical-longitudinal 

Figure 5. - Acoustic and optical vibrations for both 
transverse and longitudinal cases. Direction of 
wave motion is assumed to be to the right. 
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energy are  multiple ellipsoids centered on each of these points. The special case of sili- 
con is illustrated in figure 4. Since the energies of conduction electrons will be within 
approximately kT of each other, those electrons which a re  scattered without a change in 
energy will be represented by another point on the constant-energy surfaces of approxi- 
mate thickness kT. When the scattered state is on a different ellipsoid than the original 
(such as A - C), this is called intervalley scattering. Intravalley scattering (A - B) oc- 
curs from one state to another state on the same ellipsoid. Intravalley acoustic-mode 
scattering still leads to mobility variation as Tm3I2, but intervalley scattering can cause 
a more rapid temperature variation. Intervalley scattering is usually considered as a 
separate type and not just a variation of lattice scattering. 

the charge carriers. Scattering by ionized impurities yields a mobility which varies as 
T ~ / ~  (refs. 24 and 25). An expression for the mobility which results from neutral impurity 
scattering was obtained by Erginsoy (ref. 13). It is not temperature dependent. 

Putley (ref. 1) outlines a method of separating the lattice scattering from impurity 
scattering. A plot of the measured mobility at a fixed temperature for a number of Sam- 
ples against impurity concentrations tends to an upper limit, which indicates the lattice 
mobility. Putley states that application of this method to materials in their early states 
of development has led to incorrect results because the total impurity content is reliably 
known. 

briefly discussed by Putley and in detail by Blatt (ref. 6). Electron-electron scattering 
can influence other types of scattering and thus reduce the mobility. 

The presence of impurities in the semiconductor also contributes to the scattering of 

Electron-electron, electron-hole, and structure defect scattering processes a re  

Suggested Reterences 

An excellent reference is chapter 5 of reference 5. Smith gives a well-organized 
discussion of transport phenomena and scattering mechanisms. Blatt (ref. 5) discusses 
the theory of mobility for both metals and semiconductors. Putley (ref. 1) describes 
qualitatively and simply the scattering involved in nonpolar semiconductors and tabulates 
the mobility equations and gives references to their origins (pp. 146 and 147). Informa- 
tion specifically concerning silicon carbide is given by van Daal (ref. 7), and a good gen- 
eral discussion of mobility theory is presented by Ziman (ref. 8). 

DEVELOPMENT OF CHARGE CARRIER CONCENTRATION EQUATIONS 

A measurement of the Hall coefficient is a measurement of the charge carrier con- 
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centration at a specific temperature. Thus, if the carrier concentration equations can be 
developed as a function of temperature and other variables of interest, valuable informa- 
tion can be deduced from the Hall coefficient data. These equations are written for both 
the extrinsic and intrinsic cases. The notation and most of the material used herein are 
taken from chapter 3 of reference 2. Note that Ev, Ec, and Ef represent various en- 
ergy levels in the usual energy band scheme. However, Ed and Ea represent the en- 
ergy difference between these energy levels and the nearest band edge, that is, the con- 
duction and valence bands, respectively, and E 
conduction and valence band edge. 

is the energy difference between the 
g 

Extrinsic Equations 

Impurity level spin degeneracy. - Consider a semiconductor with Nd donor impurity 
atoms per unit volume which gives up one electron per atom. Each atom will be either 
ionized or neutral. Since the Fermi-Dirac distribution function f is the probability that 
any state of energy E will be occupied by an electron, the ratio of ionized donor atoms 
to neutral donor atoms is 

Ndi - 1 - f 
*dn f 

1 ---= 

kT 

where Ed is the donor ionization energy, Ef is the Fermi level, and f is the Fermi- 
Dirac distribution function: 

1 f(E) = 

Equation (30) is not quite correct. The effect of impurity level spin degeneracy must 
be taken into account by multiplying the denominator by l/P. For the case of Nd donor 
impurities usually P = 1/2, because the energy level of each atom can be occupied by an 
electron in two ways. For acceptor impurities p = 2, most likely. Other effects can in- 
fluence the statistical weights of the neutral and ionized conditions of the atoms. There- 
fore, P is used as a general symbol to include all the effects. A brief discussion of the 
effects that influence j3 is presented by Blakemore (ref. 2, p. 118). 
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Since Nd = Ndi + Ndn, equation (30) can be rewritten to give the density of neutral 
donors: 

This equation is basic to the developments that follow. 
Model for single monovalent donor impurities. Figure 6 illustrates the semiconduc- 

tor model to be considered first, an n-type semiconductor with monovalent, uncompen- 
sated donors of density Nd. It is impossible to have a semiconductor which would com- 
pletely satisfy this model. However, some important equations can be developed at this 
point and easily generalized later. 

must be calculated. It is equal to the integral from Ec to infinity of the product of the 
Fermi-Dirac distribution function and the density of electron states g(E) : 

The concentration of electrons excited to the conduction band is the first quantity that 

More precisely, g(E) is the density of states per unit energy interval in the conduction 

Conduction 
band 

--------- Nd donor level 

s; 
? 
aa 
S w 

Figure 6. - Model of n-type semiconductor with 
monovalent impurities and no compensation. 
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band and is given by Blakemore as 

where h is the Planck constant. Equation (33) is then calculated to be 

no = NcF1/2h) 

where 

Nc=2(  2smikT h2 )3/2 
and 

Ef - Ec v =  
kT 

and F 
no = Ndi, the expression for no becomes 

(q) is a Fermi-Dirac integral of order 1/2. Since Nd = Ndi + Ndn and 1/2 

(3 5) 

(37) 

where 

The quantity Nc is the effective density of states in the conduction band, and there- 
fore mg, which appears in Nc, is the density-of-states effective mass. It is not, in 
general, equal to the conductivity effective mass defined in the section MOBILITY AND 
ITS INFLUENCE. But like the conductivity effective mass, it is a function of mTf m;, 
and “5. For materials having symmetric conduction bands, the density-of-states ef- 
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fective mass is (mymgm$)1/3. There is a corresponding effective density of states in the 
valance band Nv and density-of-states effective mass for holes m* 

P. 

f(E) a re  approximated by exp(r]). A semiconductor is nondegenerate if the doping im- 
purity concentration is not too high, that is, if Ef is several kT less than E,. In a de- 
generate system, only a small percentage of the electrons a re  capable of changing their 
energies in infinitesimal amounts. The system considered herein is nondegenerate in that 
every electron has a full opportunity to readjust to thermal change. Therefore, F1/2(q) = 
exp(q) = no/Nc, and equation (38) becomes 

Equation (38) simplifies if conditions are nondegenerate. If this is so, F112(r]) and 

- 
no - 

1 + [ 1 + (:j - eXp(Ed) 1'" 
At  low temperature (where kT << Ed) equation (39) can be approximated by 

"0 (ON c d  N )ll2 ex.(-") 2kT 

(39) 

Plotting In no as a function of 1/T results in a curve with slope Ed/2k. By measuring 
this slope, Ed can be approximated. Because of the dependence of Nc on temperature 
( N P T ~ / ~ )  the actual slope is not exsctly Ed/2k. Note that equation (40) can be applied 
only if 

(1) Nondegenerate conditions apply. 
(2) The low-temperature condition prevails, that is, no << Nd. 
(3) Little or no compensation is assumed (as for this model), that is, Na << no. 
A knowledge of the temperature dependence of q, as well as of no, for this model is 

valuable. Knowing r] allows the data interpreter to determine whether the nondegenerate 
approximation can be used to simplify the carrier concentration equation. If, at a partic- 
ular temperature, 7 is less than -2 or -3, the semiconductor is nondegenerate at that 
temperature, and the simplified equation can be applied. This is the same as saying that 
the Fermi level Ef is 2 kT or 3 kT below the conduction band energy. 

The variable 7 can be written for nondegenerate conditions as 

7 7 =  Ef - Ec = In(:) 
kT 

2 1  



Substituting equation (39) into equation (41) results in 

For large T (where kT >> Ed), the term containing the exponential can be neglected. 
Thus, equation (42) reduces to 

r ]  = - I n k )  (43) 

For small T (where kT << Ed), the exponential dominates, and equation (42) becomes 

It is apparent that r ]  as a function of T starts low, r ises  to a maximum 7, at 
temperature Tm, and goes down again, as shown in figure 7. Therefore, if 7, is less 
than -2 or -3, the semiconductor is nondegenerate at all temperatures. There will be 
cases when the semiconductor is degenerate throughout a certain temperature range. 
This temperature range is centered around the temperature Tm. Thus, it is helpful to 
know not only r],, but Tm as well. Blakemore has developed a way of obtaining 7, 
and Tm, and his results are summarized in the following paragraphs. 

t 

Temperature, K 

Figure 7. - Nominal temperature 
dependence of variable 7 for 
model of figure 6. (nm is not 
necessarily less than 7 = 0 i n  
all cases. ) 
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The maximum qm can be calculated as a function of a quantity Z ,  which is itself a 
function of Nd, p, m:, and Ed but not of T. Taking the derivative of q from equa- 
tion (42) with respect to T and setting the result equal to zero yield the equation 

where 

E * = -  Ed 

kTm 

The quantity mo is the mass of the free electron. 
A universal plot can now be made of Edm against Z .  When this plot and a knowl- 

edge of the variables of a specific semiconductor sample which make up Z are  used, the 
temperature at which q is maximum can be determined and then qm itself. This plot 
is presented in figure 8. 

simple relation is obtained, which when combined with the root of equation (45) leads to a 
universal graphical relation of qm to Z .  This allows qm to be obtained directly from 
the curve if Nd, p, m;, and Ed of a specific semiconductor sample a r e  known. This 
graph is figure 9. Figures 8 and 9 are reprinted with permission from F. S. Blakemore, 
Semiconductor Statistics, copyright 1962, Pergamon Press Inc. 

solved simply (i. e., FlI2(q) f exp(7)). If q < 1.3, Fl/2(q) can be approximated by 
(C + exp(-q))-', where C = 0.27 and the electron concentration is calculated to be 

When equation (38) is differentiated and the condition dq/dT = 0 is imposed, a 

If there is degeneracy over part of the temperature range, equation (38) cannot be 

n =  2NdNc 
(47) 

Fo? q > 1 . 3  numerical or graphical methods must be used to solve equation (38). 
Blakemore indicates the procedure to be used. 
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Figure 8. - Ratio of donor ionization energy to temperature Q/kT (when g = gm) as func- 
t ion of Z. 
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Model for partly compensated donor impurities. - This model assumes a donor den- 
sity Nd compensated by a net density of acceptors Na, as shown in figure 10. This 
model also is not completely correct; several influencing effects are discussed in the fol- 
lowing sections. 

Generally, the concentration equations are similar to those for the simple model, but 
they take into consideration the presence of acceptor impurities which cause the semicon- 
ductor to be compensated. It is assumed that the donor energy levels lie at an appreciable 
level below the bottom of the conduction band and that the net acceptor levels lie even 
further away than the donor levels. The Fermi level Ef is assumed to be well above the 
acceptor energy levels. 

The acceptors, however, acquire electrons from the donor impurities. Thus, there 
are Nd - Na electrons to distribute between the donor levels and the conduction band. 
The number of ionized donors varies from Na at low temperatures to Nd at high tem- 
peratures, but no can become larger than Nd - Na only if the falling Fermi level ap- 
proaches -another set of impurity states or its intrinsic position. 

density of electrons lost to the acceptors Na plus the neutral donors Ndn equals the 
total number of donors (i. e., no + N + Ndn = Nd). Therefore, when equation (32) is 
used, 

* 

Obviously, for this particular case, the density of conduction electrons no plus the 

a 

N, 

4 

t E c - E d t - - - - - - - - -  Nd donorlevel 

Figure 10. - Model of compensated n-type semicon- 
ductor with monovalent donor impurities. 
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In general, when no must be written as 

and A is defined as 

Nd 
(49) 

equation (48) becomes 

When q I 1.3,  F (q) can be approximated by (C + exp(-q))-l, and equation (50) re- 
1/2 

duces to 

When the Fermi level is several kT below the conduction band (i. e., q = -2 or  -3), 
(q) M exp(q), and equation (50) reduces to Fl/2 

Both equations (51) and (52), when Na goes to zero, reduce to equations (47) and 
(39), respectively, which were originally derived for the uncompensated model. 

When compensation is small, there exists a temperature range where 
Na << no << Nd. Equation (52) becomes, in this case, 
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which is the same as equation (40). At lower temperature, however, when no I Nay 
equation (52) becomes 

n,=PNc( Nd Na Na )exp(-;) 
(54) 

Note the dependence of In no on 1/T. The dependence is twice as large for equation (54) 
as for equation (53). Since In no as a function of 1/T is often plotted to. determine Ed 
from the slope of the curve, care must be taken to differentiate between these equations. 
When compensation is large, equation (53) is never valid. For heavy compensation, 
equation (52) becomes, at all temperatures, 

Nd - Na 

Na 1 +- exp(ed) 
PNC 

n =  0 (55) 

Obviously, the equations for single monovalent and partly compensated donor impurities 
must be applied cautiously to a real semiconductor. Forethought is needed to prevent 
serious errors  when the experimental data a re  interpreted. 

This model assumes two monovalent donor impurity levels which are  compensated by a 
net acceptor density. The model is illustrated in figure 11. The concentrations of the 
two donor levels a r e  denoted as Ndl and Nd2, respectively, and their energies are 

Model for compensated semiconductor with two monovalent donor impurity levels. - 

Written as Ed1 and Ed2 with Edl > Ed2. 
The acceptor impurities trap Na electrons so that the net density available is 

Ndl + Nd2 - Na. The relative magnitudes of Ndl, Ndz, and Na must be considered, 
while remembering that Ed1 > Ed2 is assumed. It is found that only two types of be- 
havior result: Na > Ndl and Na < Ndl, If Na > Ndl, there will be no electrons at the 

level at all temperatures. This corresponds to a semiconductor which has a single Ndl 
type of donor impurity with an effective compensating density of Na - Ndl. Therefore, 
the anaiysis for partly compensated donor impurities is applicable. 

Ndl level states at 0 K. As the temperature rises, the Ndl donors start giving their 
electrons to the conduction band. When all the Ndl donor levels are empty, the elec- 

When Na < Ndl, the hd2 levels will be full, and Ndl - Na electrons will be in the 
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Figure 11. - Model of compensated n-type semiconductor 
with two indeDendent monovalent donor impurities. 

4 

Figure 12. - Action of electron concentration as function of tempefature for compensated 
semiconductor with two independent monovalent donor impurities. 

tron concentration levels off, As the temperature increases it begins to rise until all the 
Nd2 electrons are ionized, and then it levels off again. The electron concentration as a 
function of temperature is shown in figure 12. 

To discuss the model mathematically, N 
impurity (where there are a total of M different types) with ground state binding energy 
Edj. Since the density of ionized donors is equal to the conduction band electron concen- 
tration plus the density of acceptors, the following equation holds: 

is defined at the jth monovalent donor dj 
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N a + n o =  2 j=1 

Ndj 

And if the semiconductor is nondegenerate, exp(q) can be approximated by no/Nc. 
Equation (56) can then be analyzed. 

There are other extrinsic doping models that a re  important but will not be presented. 
Some of these include multivalent doping atoms, amphoteric impurities (i. e., an impurity 
that can act either as an acceptor or a donor), and those cases influenced by lattice de- 
fects. For more information about these types of semiconductors see Blakemore (ref. 2). 

Influence of excited states on carrier concentration equation. - An analogy exists be- 
tween the energy level structure of atoms and the energies that a donor impurity may ex- 
hibit. Not all donor electrons have an energy at the level Ec - Ed. Rather this level is 
the donor electron ground state, and the donor electron could be in  an excited state at an 
energy above the donor ground state. Figure 13 depicts an extended n-type compensated 
semiconductor problem, which is considered in the following paragraph. 

Let r denote the energy state. For example, r = 1 is the donor ground state, and 
r = 2 is the first excited state. Then each state has a spin degeneracy Pi1  and lies at 
energy Erl = kTErl above the ground state. The donor can bind an electron in a state 
only if it does not also have an electron bound in another state. 

0 0 0 0 0 0 0 Na net acceptor level 

Figure 13. - Compensated n-type semiconductor of figure 10 
but including donor excited states. 
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The resulting equation for the nondegenerate case is 

where 

S =  2 r=2  P r  

Equation (57) is quite similar to equation (52). If S = 0, they would be identical. Thus, 
the equations previously derived are influenced by the action of excited states in a simple 
manner. To proceed from one equation to another the term 1 + S must be appropriately 
substituted. Note that at low enough temperatures (where kT << Erl), S << 1 and 
equations (57) and (52) coincide. At high temperatures, no = Na. Thus, only at interme- 
diate temperatures does S affect no significantly. 

Other factors which influence carrier concentration equations. - It has been found 
that the ground-level donor energy is sometimes split into two levels which a re  A apart. 
This effect is a function of energy band structure. Long and Myers (ref. 14) have meas- 
ured A for a specific case. The splitting influences the electron or hole concentration, 
but the details and the degree of influence are not discussed herein. 

well as a magnetic field (ref. 16). However, except for large strains or  large magnetic 
fields, these effects are negligible. 

Strain (ref. 15) also affects the structure of impurity states in most materials as 

1 ntri nsic Equations 

A semiconductor displays intrinsic conduction when the temperature is high enough 
that the carrier concentration due to thermal excitation from the valence band is larger 
than the concentration due to excited impurities. Analysis of data in the intrinsic region 
yields the band gap of the semiconductor. 

ing the total hole density po. The equation for total electron density no has already 
been written. The hole density can be expressed similarly as 

Before the carrier concentration equation is written, clarification is needed concern- 
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where 

and E is the band gap in units of kT(E = E /kT). The hole density po is the integral 
over energy from minus infinity to the top of the valence band E, of the product of the 
density of states and the Fermi distribution for holes, which is 1 minus the Fermi distri- 
bution for electrons. 

In most cases (especially wide-band-gap material) the nondegenerate approximation 
is valid because the gap is a fairly large multiple of kT and the Fermi level is near the 
center. Since in an intrinsic semiconductor ni = no = po (where ni is defined as the 
intrinsic concentration of holes and electrons), 

g g g  

ni = Nc exp(7) = Nv exp(-E -q) (61) g 

The intrinsic carrier concentration equation is obtained when the extreme left side of 
equation (61) is multiplied by ni, the extreme right side is multiplied by Nc exp(q), and 
the square root is taken. 

= (N N )1/2 exp ni v c 

Another basic equation can be derived from equation (61): 

2 
noPo = ni 

INTERPRETATlON OF DATA 

Measured values of Hall coefficient and resistivity against temperature are usually 
displayed in a standard way. The carrier concentrakion no is calculated from the Hall 
coefficient, and then the natural logarithms of no and p are plotted as a function of in- 
verse temperature, as in figure 14. (An n-type semiconductor is assumed throughout 
this section. ) Each part of the curve on each plot yields a particular bit of information 
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Figure 14. - Typical plots of natural logarithms of carrier concentration and of resis- 
tivity as function of inverse temperature. These plots only indicate general shape 
of curves. 

about the semiconductor. The general shapes of the curves are  shown in figure 14. Note 
that the slopes of the curves at both extremes of temperature are proportional to either 
Ed or E In the extrinsic region, the carrier concentration rises as the temperature 
increases because more and more electrons are being excited into the conduction band. 
When all of the available electrons from the doping atoms are ionized, no will reach a 
constant value @?d - Na if compensated). A s  the temperature rises, hole-electron pairs 
a r e  generated as the thermal energy available becomes comparable to E Thus, no in- 
creases rapidly. 

g’ 

g’ 
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Equations have been developed for each part of each curve in figure 14. The inter- 
pretation of the data involves the choosing of the correct parameters in the equations. 
The correct parameters, when substituted in the appropriate Carrie 
tion, will match the calculated results to the experimental data. The 
are obtained by an iterative process. 

Extrinsic Data 

Several extrinsic equations have been developed in the previous sections for degener- 
ate and nondegenerate semiconductors. Some estimate of the degeneracy must be made 
in order to pick the applicable equation. The degeneracy is determined by the position of 
the Fermi level. Since the Fermi level varies as a function of temperature (as well as 
doping), it i s  possible for a particular equation to be good in one temperature range and 
not good in another. Normally, a semiconductor must be doped to 10l8 or lo1' centi- 
meter-3 before it becomes degenerate. Therefore, the procedure is to estimate the max- 
imum value of the Fermi level. And if it is several kT below the conduction band, the 
semiconductor is always nondegenerate. If it is at or above the conduction band, the 
Fermi level must be calculated more carefully as a function of temperature. 

Blakemore's variable q as a function of temperature yields the degeneracy informa- 
tion. Even for a compensated semiconductor, qm and Tm (where Tm is the tempera- 
ture at which q = qm) can be determined reasonably well by substituting Nd - Na into Z 
(eq. (46)) and then reading Tm and qm from figures 8 and 9. If equation (52) is found 
to be unusable, equation (50) or (51) must be utilized. 

Hall extrinsic data. - For this discussion it is assumed that the semiconductors in 
question are nondegenerate. However, much of the material is still applicable to the de- 
generate cases. 

Blakemore (ref. 2) and Putley (ref. 1) both outline a method of interpreting experi- 
mental Hall coefficient data which Blakemore calls one of the most popular approaches. 
The method starts with a rearranged form of equation (52) 

where the model for 
impurity levels are neglected, Notice that the right-hand side depends on the character 

tly compensated donor impurities is used. The effect 

s and on the temperature, but not on the acceptor o nor densities. The 
, and Ed which satisfy the equation at all tern- 

peratures. Each of these parameters can be estimated. Then, by iteration the param- 

33 



eters are adjusted until the calculated carrier concentration that results (using Na, Nd, 
and Ed) matches as closely as required with the experimental carr i  
Blakemore states that the method of least squares applied to  equatio 
values of Na and Nd which give the best f i t  over the entire temperature 
factory results are obtained by using a repetitive method of varying the parameters until 
the calculated results match the experimental data (private communication from Robert P. 
Ulman, formerly of Lewis Research Center and now at the Addressograph-Multigraph 
Corp. of Cleveland, Ohio). These curve-fitting procedures are time consuming, and dig- 
ital computers are helpful in doing these calculations. 

There are several ways of obtaining the estimates of the parameters in question (as- 
suming an n-type semiconductor). Either p or mg (which is in the equation for Nc) 
must be known independently. That is, if mg is known by some other type of measure- 
ment, such as cyclotron resonance, Nc can be calculated. The quantity Nd - Na can be 
estimated from the plateau (exhaustion region) of the curve of In no against reciprocal 
temperature. Donor ionization energy Ed is obtained from the slope of the In no 
against 1/T curve at low temperature (see eqs. (53) and (54)). Finally, Na/p can be 
calculated by using equation (54) if no at an arbitrary low temperature is known. 

Putley suggests b o  methods for estimating Nd and Na. In the first method the in- 
tercepts of the low-temperature part of the plot of In no against 1/T, where equa- 
tion (54) is valid, a r e  measured. This allows (Nd - Na)/Na to be determined. Then, 
from the exhaustion region of the same plot, Nd - Na is estimated and, therefore, values 
of Nd and Na a re  obtained. In the second method, the curve at low temperature in fig- 
ure 15 is extrapolated backwards using equation (54) until it intercepts the exhaustion line. 
At the temperature corresponding to the point of intersection, the left-hand side of equa- 
tion (64) equals Na. By estimating Nd - Na from the exhaustion region, Nd and Na 
can be determined. 

Often there will occur plots of In no against 1/T in which there is more than one 
dip in the curve. This situation might correspond to semiconductors with two or more 
levels of either donor or acceptor impurities, or to impurities which can accommodate 
more than one electron, or to structural defects of the lattice of the semiconductor. 
When this is the case, the generalized equation (56) must be used in the interpretation of 
the data. Putley includes an excellent discussion of this problem (ref. 1, section 4.8). 

Because of the temperature dependence of the quantities Nc and Nv, the plot of 
In no against 1/T will not be a perfectly straight line at low temperature. This makes 
the calculation of the impurity ionization energy Ed inaccurate. However, if the tem- 
perature dependence of Nc is plotted on the ordinate along with no, the slope at low 
temperatures will be directly proportional to Ed' For example, assume that conditions 
are such that equation (5 

oncentration data. 

olds at low temperatures. Notice that Nc is proportional 
3/2 ) can be plotted against 1/T to obtain a curve with a 
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Figure 15. - Method of determining concentration of donor and acceptor impurities Nd and 
Na of compensated semiconductor. 

slope truly proportional to Ed. 

outlined herein. There are other variations which have been used and published. For ex- 
ample, van Daal, Knippenberg, and Wasscher (ref. 17) have developed a method for anal- 
yzing Hall data which extrapolates the measured curves to the region of complete exhaus- 
tion. This method could be valuable in those cases where data could not be taken at suf- 
f iciently high temperatures. 

The fact that impurity ionization energy becomes smaller as the impurity density is 
increased was shown by Pearson and Bardeen (ref. 18). At a certain density, character- 
istic of the host lattice and the impurity type, the impurity ionization energy actually be- 
comes zero. The variation in Ea as a function of Na is shown in figure 16. Care must 
be taken when determining the impurity ionization energy when the doping is high. 

It must be emphasized that the interpretation of the data need not follow the pattern 

Resistivity extrinsic data. - Little has been said about the interpretation of resistiv- 
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Figure 16. - Effects of boron concentration on boron acceptor ionization energy in silicon 
according to measurements of Pearson and Bardeen (ref. 18). 

ity against temperature data because only the impurity ionization energy can be deter- 
mined from it. However, resistivity is simpler to measure than the Hall coefficient. 
Therefore, in the case where the Hall data (In no against 1/T curve) does not straighten 
out at low temperatures and, thus, the ionization energy is still in doubt, resistivity data 
may be very useful. In this case, since l / p  = noqpn (for n-type) and the mobility is not 
an exponential function of T at low temperatures, the exponential exp(-Ed/kT) in the 
carrier concentration term no dominates the behavior. A plot of In p against 1/T 
yields the ionization level. Resistivity measurements are then emphasized at lower tem- 
peratures, and a more accurate determination of the impurity ionization energy may be 
possible. 

A knowledge of mobility is important for device design. 
Resistivity, as well as the Hall coefficient, is required to calculate the Hall mobility. 

lntrinsic Data 

When a semiconductor is intrinsic, no = po = ni, and the equations of resistivity and 
Hall coefficient when both types of carriers are present reduce to  
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and 

The equations a re  altered from the extrinsic case by the inclusion of sums and differences 
of the electron and hole mobilities. For example, the measured Hall coefficient cannot 
be directly related to the carrier concentration, as in the extrinsic case. Thus, the car- 
r ier concentration cannot be calculated unless the mobilities are known. However, the 
band gap energy E 
carrier concentration. This term dominates the temperature dependence of the mobili- 
ties, and thus the slopes of the plots of In RH against 1/T or In p against l/T 
(fig. 17) give the band gap energy. Once again, as in the extrinsic case, it may be easier 
to measure resistivity at the temperature extreme (i. e., high temperature) of intrinsic 
comnduction. The band gap energy E 
it is assumed to be a linear function of temperature, 

appears in the exponential term of equation (62) for the intrinsic 
g 

usually is a function of temperature (ref. 2). But if  
g 

Eg = Ego - aT 

the exponential term in the carrier concentration equation becomes a constant times 
exp(-E /2kT). Therefore, the plots in figure 17 yield the band gap at 0 K. The band 
-- i s  not necessarily a linear function of temperature, therefore the plots still appear 

go 

.urved in these cases. 

* 
..ntrinsic conduction it becomes 

the Hall coefficient is divided by the resistivity, the Hall mobility is the result. 

Interpretation of Data Near lntrinsic Conduction 

The Hall and resistivity curves as a function of temperature take on unexpected 
shapes as they approach the intrinsic region. These shapes are dependent on whether the 
semiconductor is n- or p-type and on the semiconductor mobility ratio b = pn/p 
possible that the intrinsic data will be misinterpreted if these shapes are ignored. The 

It is 
P' 
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(a) For b < 1.46. 
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(b) For 1.46 < b < 3.7. 

Inverse temperature, UT, ~ - 1  
L 

(c) For b > 3.7. (d) For all b. 
Figure 17. - Variation of natural logarithms of Hall coefficient and resistivity with inverse temperature for three mobility 

ratios, b < 1.46, 1.46 < D < 3.7, and b >  3.7. Dashed lines indicate t rue intr insic slopes. 

general shapes of the curves a re  shown in figure 17. Dunlap (ref. 19) first discussed 
this problem, but Hunter (ref. 9) describes it in more detail. 

There a re  two prominent features of the curves in figure 17. The first is that the 
RH for p-type semiconductors usually changes sign as the intrinsic region is approached. 
This feature is expressed in equation (6), since pn is usually greater than p . The 

intrinsic values (shown by the dashed line). This is known as overshoot. Thus, the re- 
sistivity for p-type semiconductors for all mobility ratios is greater than the intrinsic 
resistivity in a certain temperature range. As the temperature increases, the resistivity 

second is that RH and p for some cases at some temperatures are greater t R an their 
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approaches its intrinsic value. It is now obvious that if measurements of RH and p are 
not made at temperatures high enough to go beyond the overshoot region, the measured 
slope will be incorrect, And, therefore, the band gap energy will be incorrect. 

SPECIFYING TEMPERATURE RANGE OF DATA 

The Hall coefficient and resistivity must be measured throughout certain specified 
temperature ranges. The informative parts of the curves of no and p as a function of 
1/T appear only at characteristic temperatures. Therefore, in order to  ensure that 
enough data are collected, the required temperature range must be estimated beforehand. 
This is also likely to be important in terms of cost. For example, if the electrical prop- 
erties of a specimen need not be measured below liquid-nitrogen temperatures (77 K), the 
large cost and complications of a liquid-helium cryostat can be avoided, 

At low. temperatures the limiting factor is the ionization energy of the impurities. 
The plot of In no against 1/T must have a constant slope at low temperatures. A s  the 
energy levels of the impurities lie closer to the conduction band, the lowest temperature 
at which data must be taken decreases. 

The high-temperature limit is dependent on what is to be obtained. If the band gap of 
the basic material is to be measured thermally, the data must extend well into the intrin- 
sic region. To measure the doping concentrations of a particular piece of semiconductor, 
the measurement of the carrier concentration (i. e., Hall coefficient) must extend to the 
exhaustion region. There all the impurities a re  ionized and the carrier concentration is 
constant with ternperatur e. 

Obviously, the low- and high-temperature limits are peculiar to each semiconductor 
material. Therefore, the method of specifying the temperature range will involve search- 
ing the literature for information about the band gap and ionbation energies and compar- 
ing this with known semiconductors, such as silicon and germanium. Measurements on 
these semiconductors must be as low as liquid-helium temperatures. 

In the case of a wide-band-gap semiconductor, such as silicon carbide, the tempera- 
ture range may be shifted upwards and expanded. Since the band gap is approximately 
3 electronvolts for hexagonal silicon carbide, the plateau region of carrier concentration 
data will probably be above room temperature. Previous measurements made at the 
Westinghouse Research Laboratory in Pittsburgh indicate that temperatures of at least 
550 to 600 K are required to obtain the necessary extrinsic data. This is nearing the in- 
trinsic region, which occurs at temperatures above 850 K (for doping levels of about 
lo1? 

The low-temperature limit for silicon carbide can be as low as liquid-helium tem- 
peratures, but, practically speaking, liquid-nitrogen temperatures are sufficient. An 
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impurity energy level may be very close to a band edge and thus be 
tremely low temperatures. However, the probability of this happen 
is probably less than in silicon (which has a band gap about one-third that of silicon car- 
bide). Therefore, for the example of silicon carbide, the temperature range of interest 
would be from liquid-nitrogen temperatures to greater than 550 K. Probably the upper 
limit should be extended to 850 K to make certain the exhaustion region is reached. For 
doping levels greater than about lo1? h en ti meter-^, the upper limit may need to be in- 
creased even further. 

CONCLUSIONS 

The measurement and interpretation of the Hall coefficient and resistivity of semi- 
conductors were outlined, and the basic equations of carrier concentration, obtained from 
other sources, were summarized. Some known methods of interpreting the experimental 
data by use of these basic carrier concentration equations were then discussed. 

In considering the applicability of the measurements to both basic materials research 
and device design, it was  pointed out that the energy levels of the impurities, the band 
gap energy, and the mobility are valuable to the materials researcher. For the device 
designer, the mobility, the impurity ionization energies, and the doping concentrations 
are  important. All of these quantities are obtained from an analysis of the Hall and re- 
sistivity data. 

The van der Pauw method is favored because in that method the semiconductor sample 
need not be of a particular shape. This is advantageous in the case where only small 
samples are available. 

The mobility of semiconductors was shown to be related to an energy-ave 
laxation time which is a characteristic of a particular scattering process and 
semiconductor material. The results of the derivation of the relation between mobility 
and relaxation time were given for the simplest case, where the constant-energy surfaces 
were spherical and there was only one energy minimum or maximum. Thk results were 
extended to the cases where the constant-energy surfaces were nonspherical and there 

ltiple energy minimums or maximums. Although no relaxation time calculations 
for specific scattering processes were given, the different kinds of scattering were qual- 
itatively discussed. The factor a! which relates the Hall coefficient to the carrier 
concentration resulted from the same type of derivation. 

Two methods of measuring the Hall coefficient and resistivity were briefly described. 

s for charge carrier concentration were developed for both extrinsic and 
ction. The extrinsic equations were found to be primarily functions of 

purity concentratio the impurity ionization energy, The intrinsic 
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equation was a function of temper 
were found to  be modified by different types of doping, 

s could be estimated 

method of iterative calculations, the estimated parameters 

The temperature range over which the Hall coefficient and resistivity must be meas- 
ured in order to use the methods presented in this report was discussed. Measurements 
must be collected at a temperature low enough that the slope of the In no against 1 
curve becomes constant. At high temperatures the same curve must level off at a con- 
stant no (the exhaust region). If intrinsic properties of the semiconductor, such as  band 
gap energy, a r e  wanted, the measurement must extend well above the temperature where 
the semiconductor becomes intrinsic. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 27, 1968, 
120-27-01-25-22. 
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energy, eV 

acceptor ionization energy, eV k 

energy of bottom of conduction 
Boltzmann constant, 

1 . 3 8 ~ 1 0 ~ ~ ~  J K-l 

i; wave vector i(components band, eV 

donor ionization energy, eV $, 5, kz makeup 
- 1  -e 

donor ionization energy of 

Fermi level, eV 

E at T = 0 for linear varia- mT, m z )  tensor, kg g 
tion of Eg, eV 

k-space), m 

donor of jth kind, eV L (effective) length of bridge- 
shaped crystal sample, cm 

components of effective mass 
band gap energy, eV me, m* 

m$ 
energy difference .between mJIT effective mass of electrons, kg 

mass of free electrons, ground level and rth level, mO 

m; 

eV 9. l lX10-31 kg 

effective mass of holes, kg energy of top of valence band, 
eV 

4 B ,gZ components of electric field, x' Y 
Vcm-l 

particular Fermi-Dirac in- 
tegral 

f(E) Fermi-Dirac distribution 
function 

F1/2(V) 

correction factor in van der 
Pauw's resistivity equation 
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concentration of acceptor im- 
-3 Na 

purities, CM 

effective density of states in NC 
conduction band, 

purities, cme3 

impurities, cm-3 

concentration of donor im- Nd 

Ndi concentration of ionized donor 

concentration of donor im- Ndj 
purities of f h  kind, cmm3 



Ndn 

NV 

ni 

PO 

q 

Rab, cd 

RH 
S 

T 

Tm 

t 

'CE 

VH 
(vx ) 

concentration of neutral 
donor impurities, cm'3 

effective density of states in 
valence band, cm-3 

intrinsic concentration of 
electrons and holes, cmm3 

equilibrium concentration of 
electrons, cm-3 

equilibrium concentration of 
holes, cmm3 

electronic charge, 
1. 60X10-19 C 

ratio of voltage measured 
across contacts d and c 
with current flawing into 
a and out b (other such 
ratios defined similarly), 
ohms 

3 1  Hall coefficient, cm C- 

summation of effects of en- 
ergy of excited state of 
impurity atoms 

temperature, K 

temperature where 77 = m' 

thickness of crystal sample, 

K 

cm 

voltage drop from C to E, 

Hall voltage, V 

x component of average 

V 

drift velocity of electron, 
cm sec-l 

width of bridge-shaped crys- 
tal sample, cm 

on temperature, cm-3 
ion not dependent 

ev-3/2 

constant relating Hall coef- 
ficient and carrier concen- 
trat ion 

impurity level spin degener- 
acy 

acy of impurity of jth kind 

acy of rth level 

impurity level spin degener- 

impurity level spin degener- 

defined variable, (E - Ec)/kT 

defined variable, Ed /kT 

defined variable, E /kT 

defined variable, Ed /kTm 

defined variable, E /kT 

defined variable, Erl /kT 

defined variable, (Ef - Ec)/kT 

maximumof 77 

conductivity mobility, 

dj 

g 

cm2 v - ~  sec-l 
2 Hall mobility, cm V-l sec-l 

components of conductivity 
mobility, cm V-l sec-' 2 

electron mobility, 
cm2 v - ~  sec-l 

hole mobility, cm V-l  sec-' 2 
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p resistivity, Q/cm r relaxation time, sec 

Q electrical conductivity, Q" cm" (7) relaxation time averaged over en- 
ergy, sec 
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